Issue 23, 2023

Colossal negative thermal expansion in a cucurbit[8]uril-enabled uranyl-organic polythreading framework via thermally induced relaxation

Abstract

It is an ongoing goal to achieve the effective regulation of the thermal expansion properties of materials. In this work, we propose a method for incorporating host–guest complexation into a framework structure and construct a flexible cucurbit[8]uril uranyl-organic polythreading framework, U3(bcbpy)3(CB8). U3(bcbpy)3(CB8) can undergo huge negative thermal expansion (NTE) and has a large volumetric coefficient of −962.9 × 10−6 K−1 within the temperature range of 260 K to 300 K. Crystallographic snapshots of the polythreading framework at various temperatures reveal that, different from the intrinsic transverse vibrations of the subunits of metal–organic frameworks (MOFs) that experience NTE via a well-known hinging model, the remarkable NTE effect observed here is the result of a newly-proposed thermally induced relaxation process. During this process, an extreme spring-like contraction of the flexible CB8-based pseudorotaxane units, with an onset temperature of ∼260 K, follows a period of cumulative expansion. More interestingly, compared with MOFs that commonly have relatively strong coordination bonds, due to the difference in the structural flexibility and adaptivity of the weakly bonded U3(bcbpy)3(CB8) polythreading framework, U3(bcbpy)3(CB8) shows unique time-dependent structural dynamics related to the relaxation process, the first time this has been reported in NTE materials. This work provides a feasible pathway for exploring new NTE mechanisms by using tailored supramolecular host–guest complexes with high structural flexibility and has promise for the design of new kinds of functional metal–organic materials with controllable thermal responsive behaviour.

Graphical abstract: Colossal negative thermal expansion in a cucurbit[8]uril-enabled uranyl-organic polythreading framework via thermally induced relaxation

Supplementary files

Article information

Article type
Edge Article
Submitted
13 Mar 2023
Accepted
03 May 2023
First published
10 May 2023
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY-NC license

Chem. Sci., 2023,14, 6330-6340

Colossal negative thermal expansion in a cucurbit[8]uril-enabled uranyl-organic polythreading framework via thermally induced relaxation

Q. Jin, Y. Liang, Z. Zhang, L. Meng, J. Geng, K. Hu, J. Yu, Z. Chai, L. Mei and W. Shi, Chem. Sci., 2023, 14, 6330 DOI: 10.1039/D3SC01343J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements