Transition of rupture mode of strain crystallizing elastomers in tensile edge-crack tests†
Abstract
We revisit the classical results that the fracture energy density (Wb) of strain crystallizing (SC) elastomers exhibits an abrupt change at a characteristic value () of initial notch length (c0) in tensile edge-crack tests. We elucidate that the abrupt change of Wb reflects the transition in rupture mode between the catastrophic crack growth without a significant SIC effect at c0 > and the crack growth like that under cyclic loading (dc/dn mode) at c0 < as a result of a pronounced SIC effect near the crack tip. At c0 < , the tearing energy (G) was considerably enhanced by hardening via SIC near the crack tip, preventing and postponing catastrophic crack growth. The fracture dominated by the dc/dn mode at c0 < was validated by the c0-dependent G characterized by G = (c0/B)1/2/2 and the specific striations on the fracture surface. As the theory expects, coefficient B quantitatively agreed with the result of a separate cyclic loading test using the same specimen. We propose the methodology to quantify the tearing energy enhanced via SIC (GSIC) and to evaluate the dependence of GSIC on ambient temperature (T) and strain rate (). The disappearance of the transition feature in the Wb–c0 relationships enables us to estimate definitely the upper limits of the SIC effects for T (T*) and (*). Comparisons of the GSIC, T*, and * values between natural rubber (NR) and its synthetic analog reveal the superior reinforcement effect via SIC in NR.