Study of the interfacial viscoelasticity of human serum albumin microcapsules using a viscoelasto-electrohydrodynamic technique†
Abstract
Crosslinked proteins are widely used as the encapsulating membranes in microcapsules for many biomedical and food industries. The interfacial rheological properties of these capsules are due to the complex microstructure of cross-linked globular proteins owing to structural changes at quaternary, tertiary and secondary levels. These changes in structure can be induced by high protein concentration, hydrophobic–hydrophillic interfaces, and pH. In this work, the interfacial viscoelastic rheological properties of human serum albumin (HSA) microcapsules are estimated using a novel electrodeformation technique exhibiting creep and oscillatory responses. Insights into the microstructure–rheology relationship are obtained using FTIR and SEM studies. The results show a complex dependence of the interfacial properties on the size, concentration and pH of the capsules. An interplay of inter-molecular interactions, adsorption and multilayer formation, accessibility to reactive functional groups, and dependence on the relative content of alpha helix, beta sheet and beta turn is observed. The interfacial rheological properties are estimated using the Burger model and creep is found to sensitively affect the rheological properties due to irreversible changes in microstructure. Furthermore, the electrodeformation technique allows analysis of interfacial rheology at high frequencies, 10 Hz to 1 kHz, which is otherwise not easily possible with conventional rheometers.