Issue 4, 2023

Impact of process flexibility and imperfect forecasting on the operation and design of Haber–Bosch green ammonia

Abstract

Green ammonia is a promising energy storage vector which can provide back-up power when variable renewable energy sources (VREs) are not generating. However, it is generally agreed in the literature that the limited flexibility of the Haber–Bosch process required for ammonia synthesis increases its production cost. We assess the truth of this claim using two methods: firstly, a perfect forecasting design model based on Linear Programming (LP); and secondly, a model predictive control (MPC) approach which can estimate how the plant will operate with finite weather forecast information. This MPC approach is the first in the literature to demonstrate how islanded green ammonia plants can be operated without perfect forecasting. The LP approach demonstrates that, from a design perspective, there are diminishing marginal returns from improving HB flexibility; by 2050, there will be almost no benefit associated with reducing the HB MOR below 60%. The MPC approach supports this claim at a solar-dominated sites; however, at wind-dominated sites, the inability to perform long-distance forecasting means flexibility is an important lever for the plant to operate robustly.

Graphical abstract: Impact of process flexibility and imperfect forecasting on the operation and design of Haber–Bosch green ammonia

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
23 Feb 2023
Accepted
15 Apr 2023
First published
24 Apr 2023
This article is Open Access
Creative Commons BY-NC license

RSC Sustain., 2023,1, 923-937

Impact of process flexibility and imperfect forecasting on the operation and design of Haber–Bosch green ammonia

N. Salmon and R. Bañares-Alcántara, RSC Sustain., 2023, 1, 923 DOI: 10.1039/D3SU00067B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements