Issue 4, 2023

Fabrication of electrospun nanofibrous thermoresponsive semi-interpenetrating poly(N-isopropylacrylamide)/polyvinyl alcohol networks containing ZnO nanoparticle mats: characterization and antibacterial and cytocompatibility evaluation

Abstract

Thermoresponsive nanofiber composites comprising biopolymers and ZnO nanoparticles with controlled release and antibacterial activity are fascinating scientific research areas. Herein, poly(N-isopropylacrylamide) (PNIPAm) was prepared and mixed with poly(vinyl alcohol) (PVA) in 75/25 and 50/50 weight ratios together with ZnO (0, 1, and 2 phr) to construct nanofiber composites. The morphology of the crosslinked nanofiber composites, ZnO content, and their mechanical behavior were assessed by SEM, EDX, and tensile analyses. The wettability results show an increment in nanofiber surface hydrophobicity by increasing the temperature above the LCST of PNIPAm. The in vitro ZnO release exhibits a faster release profile for the sample with 50 wt% PNIPAm (lower crosslinking density) compared to the one with 25 wt%. Besides, a strong interaction between PVA hydroxyl groups and ZnO can restrict the release content. However, by increasing the temperature from 28 to 32 °C, the relative ZnO release becomes half for both compositions. All crosslinked nanofiber composites demonstrated reliable biocompatibility against L929 fibroblast cells. Agar disc-diffusion and optical density methods showed thermo-controllable antibacterial activity against Staphylococcus aureus upon temperature variation between 28 and 32 °C. Furthermore, in vivo and histological results indicate the potentiality of the prepared multidisciplinary wound dressing for robust wound healing and skin tissue engineering.

Graphical abstract: Fabrication of electrospun nanofibrous thermoresponsive semi-interpenetrating poly(N-isopropylacrylamide)/polyvinyl alcohol networks containing ZnO nanoparticle mats: characterization and antibacterial and cytocompatibility evaluation

Supplementary files

Article information

Article type
Paper
Submitted
12 Oct 2022
Accepted
09 Dec 2022
First published
12 Dec 2022

J. Mater. Chem. B, 2023,11, 890-904

Fabrication of electrospun nanofibrous thermoresponsive semi-interpenetrating poly(N-isopropylacrylamide)/polyvinyl alcohol networks containing ZnO nanoparticle mats: characterization and antibacterial and cytocompatibility evaluation

E. Hosseini-Alvand and M. Khorasani, J. Mater. Chem. B, 2023, 11, 890 DOI: 10.1039/D2TB02179J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements