A highly selective and sensitive endoplasmic reticulum-targeted probe reveals HOCl- and cisplatin-induced H2S biogenesis in live cells†
Abstract
Reactive oxygen species (ROS) and reactive sulfur species (RSS) are involved in many physiological processes and act as collaborators with crosstalk. As an important member of gasotransmitters and RSS, hydrogen sulfide (H2S) carries out signaling functions at submicromolar levels because of its high reactivity. Mechanisms of dynamic regulation of ROS and H2S production are poorly understood, and the development of a highly selective and organelle-targeted chemical tool will advance the further understanding of H2S chemical biology and ROS/RSS crosstalk. Herein, we report a highly selective and sensitive, endoplasmic reticulum (ER)-targeted fluorescent probe (ER-BODIPY-NBD) for revealing cisplatin-induced H2S biogenesis for the first time. The probe demonstrates a 152-fold fluorescence enhancement at 520 nm after reaction with H2S to release a bright BODIPY product (quantum yield 0.36). The probe is highly selective toward H2S over biothiols, ER-targeted, and biocompatible. In addition, the probe was successfully employed to track H2S biogenesis in live cells via stimulation from exogenous hypochlorous acid and the drug cisplatin.