Rapid detection of furanyl fentanyl in complex matrices using Leidenfrost desorption-assisted low-temperature arc plasma ionization mass spectrometry†
Abstract
The abuse of illicit drugs poses serious threats to the physical and mental health of users, as well as to the overall safety and welfare of society. In this work, we present a newly developed technique for drug detection based on mass spectrometry. This technique combines Leidenfrost desorption with low-temperature arc plasma ionization mass spectrometry. This method is applicable for detecting furanyl fentanyl in complex matrices. Key advantages of this technique include minimal sample fragmentation and high sensitivity for detection. The Leidenfrost desorption plays a pivotal role in this methodology, as it spontaneously concentrates analyte molecules during the gradual evaporation of the solvent. Eventually, these concentrated molecules are redistributed at their highest concentrations, resulting in exceptionally high sensitivity. In the course of our investigation, we achieved a remarkable detection limit of 10 pg mL−1 for furanyl fentanyl in pure water. Moreover, the characteristic ion peaks of furanyl fentanyl can be distinctly identified within complex matrices such as wine, beverages, urine, and lake water. This innovative drug detection technology offers several advantages, including a simple setup, cost-effectiveness, rapid detection, high sensitivity, and minimal sample pretreatment.