Enhanced detection of acetamiprid via a gold nanoparticle-based colorimetric aptasensor integrated with a hybridization chain reaction†
Abstract
This study presents a novel colorimetric aptasensor, which seamlessly integrates gold nanoparticles (AuNPs) with the amplification potential of the hybridization chain reaction (HCR) for enhanced detection of acetamiprid. The aptamer, hybridized with a partially complementary strand that is covalently linked to AuNPs, serves as the recognition element for acetamiprid. The free end sequence of the aptamer, distal from the AuNP surface, functions as the initiating strand for the HCR, triggering the amplification process. In the absence of acetamiprid, the HCR efficiently occurs, conferring robust salt tolerance to the AuNPs and maintaining their characteristic red coloration. However, in the presence of acetamiprid, the aptamer preferentially binds to its target, disrupting the double-stranded structure and leading to the dissociation of the aptamer from the AuNPs. This dissociation results in a decrease in the HCR product, subsequently diminishing the salt tolerance of AuNPs and triggering a colorimetric transition from red to gray. This integration enhances sensitivity to 3.14 nM. Additionally, carbon quantum dots (CQDs) transduce colorimetric signals to fluorescent ones, further boosting the sensitivity to 0.24 nM. The aptasensor exhibits excellent selectivity and robustness. Real-world testing on tomato, peach, and lettuce shows recoveries of 98.50% to 100.36% with low standard deviations, validating its utility for pesticide residue analysis and food safety. This study provides a powerful tool for rapid and accurate pesticide detection, crucial for food safety.