Issue 12, 2024

Microwave-assisted synthesis of Co-free Li[Li0.2Ni0.2Mn0.6]O2 cathodes with a spinel-layered coherent structure for high-power Li-ion batteries

Abstract

Li- and Mn-rich layered oxides (LMLOs) are regarded as the most promising cathode materials for Li-ion batteries (LIBs), but they suffer from poor rate capability. Herein, a promising and practical method (i.e. a hydroxide coprecipitation method in combination with a microwave heating process) is developed to controllably synthesize cobalt-free Li[Li0.2Ni0.2Mn0.6]O2 with a layered/spinel heterostructure (LLNMO-LS). The cathode made of the LLNMO-LS delivers an excellent electrochemical performance, demonstrating a discharge capacity of 147 mA h g−1 at 10C.

Graphical abstract: Microwave-assisted synthesis of Co-free Li[Li0.2Ni0.2Mn0.6]O2 cathodes with a spinel-layered coherent structure for high-power Li-ion batteries

Supplementary files

Article information

Article type
Communication
Submitted
11 Sep 2023
Accepted
14 Dec 2023
First published
15 Jan 2024

Chem. Commun., 2024,60, 1634-1637

Microwave-assisted synthesis of Co-free Li[Li0.2Ni0.2Mn0.6]O2 cathodes with a spinel-layered coherent structure for high-power Li-ion batteries

S. Wang, J. Chen, T. Zhao, X. Yang, L. Qiu, Y. Wang, Y. Song, Z. Wu, X. Guo and K. Yu, Chem. Commun., 2024, 60, 1634 DOI: 10.1039/D3CC04496C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements