Aggregation and phase separation of α-synuclein in Parkinson's disease
Abstract
The deposition of α-synuclein (α-Syn) in Lewy bodies serves as a prominent pathological hallmark of Parkinson's disease (PD). Recent research has revealed that α-Syn can undergo liquid–liquid phase separation (LLPS) during its fibrillization. Over time, the maturation of the resulting condensates leads to a liquid-to-solid phase transition (LSPT) ultimately resulting in the amyloid deposition in cells which is linked to the pathogenesis and development of PD. Herein, we summarize the understanding of α-Syn aggregation which can be described by nucleation and elongation steps to obtain insights into the correlation of protein aggregation, structural polymorphism, and PD progression. Additionally, we discuss the LLPS phenomena of α-Syn and heterotypic cross-amyloid interactions with a focus on aberrant LSPT in the aggregation process. Exploring the underlying mechanisms and interplay between α-Syn aberrant aggregation, pathological phase transitions, and PD pathogenesis will shed light on potential therapeutic interventions.