Direct C(sp3)–H functionalization with aryl and alkyl radicals as intermolecular hydrogen atom transfer (HAT) agents
Abstract
Recent years have witnessed the emergence of direct intermolecular C(sp3)–H bond functionalization using in situ generated aryl/alkyl radicals as a unique class of hydrogen atom transfer (HAT) agents. A variety of precursors have been exploited to produce these radical HAT agents under photocatalytic, electrochemical or thermal conditions. To date, viable aryl radical precursors have included aryl diazonium salts or aryl azosulfones, diaryliodonium salts, O-benzoyl oximes, aryl sulfonium salts, aryl thioesters, and aryl halides; and applicable alkyl radical sources have included tetrahalogenated methanes (e.g., CCl3Br, CBr4 and CF3I), N-hydroxyphthalimide esters, alkyl bromides, and acetic acid. This review summarizes the current advances in direct intermolecular C(sp3)–H functionalization through key HAT events with in situ generated aryl/alkyl radicals and categorizes the procedures by the specific radical precursors applied. With an emphasis on the reaction conditions, mechanisms and representative substrate scopes of these protocols, this review aims to demonstrate the current trends and future challenges of this emerging field.
- This article is part of the themed collection: ChemComm Most Popular 2024 Articles