Visible light-activated polyphenol–Al3+ coordination for ambient and quantitative xylose-to-furfural conversion†
Abstract
Bio-based xylose-to-furfural conversion is often accompanied by condensation/degradation at evaluated thermal conditions. This study presents a combined strategy of visible light-enhanced acidity and local photothermal effect for room-temperature cascade isomerization-dehydration of xylose to furfural in an ultrahigh yield (96.3%), in which Lewis acidic Al3+ centers facilitate electron transfer from xylose to initiate isomerization and the formation of Al3+-polyphenol complex is enabled to release Brønsted acid for dehydration while co-added bio-graphene in situ offers satisfactory photothermal conditions.
- This article is part of the themed collection: Chemistry for a Sustainable World – Celebrating Our Community Tackling Global Challenges