Synergy of CuO and g-C3N4 for boosting hydrogen peroxide photosynthesis†
Abstract
Carbon nitride is a promising photocatalyst for hydrogen peroxide (H2O2) production under visible light irradiation. However, current carbon nitride-based photocatalysts show limited H2O2 production owing to high impedance and poor charge transfer ability. In this work, we present a series of CuO decorated graphitic phase carbon nitride (g-C3N4) composites, exhibiting suitable bandgaps for the photocatalytic production of H2O2. The experimental results showed that CuO/g-C3N4 composites exhibited excellent photocatalytic H2O2 production performance and good photocatalytic cycle stability. Significantly, the optimized 30%-CuO/g-C3N4 composite exhibits a high H2O2 yield of 2722.47 μmol L−1 with the addition of CH3OH under visible light. Furthermore, the photocatalytic mechanism is well studied by density functional theory calculations. This work demonstrates that CuO/g-C3N4 composites hold great promise for photocatalytic H2O2 production application.