Issue 18, 2024

First-principles evaluation of dopant impact on structural deformability and processability of Li7La3Zr2O12

Abstract

Li7La3Zr2O12 (LLZO) and related ceramic solid electrolytes feature excellent stability and reasonable ionic conductivity, but processing remains challenging. High-temperature co-sintering is required for successful integration with the electrode, which is energetically costly and can lead to unacceptable cathode degradation. The introduction of dopants can promote lower-temperature processing by improving deformability and disrupting lattice integrity; however, an unbiased, systematic study correlating these properties to the dopant chemistry and composition is lacking. Here, we rely on a set of static and dynamic metrics derived from first-principles simulations to estimate the impact of doping on LLZO processability by quantifying LLZO structural deformability. We considered three distinct dopants (Al, Ba, and Ta) as representatives of substitutional incorporation on Li, La, and Zr sites. Our descriptors indicate that doping in general positively impacts lattice deformability, although significant sensitivities to dopant identity and concentration are observed. Amongst the tested dopants, Al doping (on the Li site) appears to have the greatest impact, as signaled across nearly the entire set of computed features. We suggest that these proxy descriptors, once properly calibrated against well-controlled experiments, could enable the use of first-principles simulations to computationally screen new ceramic electrolyte compositions with improved processability.

Graphical abstract: First-principles evaluation of dopant impact on structural deformability and processability of Li7La3Zr2O12

Supplementary files

Article information

Article type
Paper
Submitted
20 Sep 2022
Accepted
12 Jul 2023
First published
12 Jul 2023
This article is Open Access
Creative Commons BY license

Phys. Chem. Chem. Phys., 2024,26, 13762-13772

First-principles evaluation of dopant impact on structural deformability and processability of Li7La3Zr2O12

A. Dive, K. Kim, S. Kang, L. F. Wan and B. C. Wood, Phys. Chem. Chem. Phys., 2024, 26, 13762 DOI: 10.1039/D2CP04382C

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements