Issue 2, 2024

How does theory compare to experiment for oscillator strengths in electronic spectra? Proposing range-separated hybrids with reliable accountability

Abstract

As an important quantity in atomic and molecular spectroscopy, oscillator strength should be mentioned. Oscillator strength is linked to the transition dipole moment and consequently to the transition probability between two states, where its magnitude is directly connected to the intensity of the peaks in ultraviolet-visible spectra. However, accurately accounting for oscillator strengths still remains one of the greatest challenges in theory and experiment. Given previous efforts in the context of investigations into oscillator strengths, the related theoretical treatments are relatively limited and have proven to be challenging. In this work, the oscillator strengths in the electronic spectra of organic compounds have thoroughly been investigated with the help of optimally tuned range-separated hybrids (OT-RSHs). In particular, variants of the OT-RSHs combined with the polarizable continuum model (PCM), OT-RSHs-PCM, as well as their screened versions accounting for the screening effects by the electron correlation through the dielectric constant, OT-SRSHs-PCM, are proposed for reliable prediction of the oscillator strengths. The role of the involved ingredients in the proposed methods, namely the underlying density functional approximations, short-range and long-range Hartree–Fock (HF) exchange, as well as the range-separation parameter, has been examined in detail. It is shown that any combination of the parameters in the proposed approximations does not render the reliable oscillator strengths, but a particular compromise among them is needed to describe the experimental data well. Perusing all the results of our developed methods, the best ones are found to be the generalized gradient approximation-based OT-RSHs-PCM, coupled with the linear response theory in the non-equilibrium solvation regime, with the correct asymptotic behavior and incorporating no (low) HF exchange contributions in the short-range part. The best proposed approximations also reveal superior performances not only with respect to their standard counterparts with the default parameters but also as compared to earlier range-separated functionals. Finally, the applicability of the best approximation is also put into broader perspective, where it is used for predicting the oscillator strengths in other sets of compounds not included in the process of developing the approximations. Hopefully, our proposed method can function as an affordable alternative to the expensive wave function-based methods for both theoretical modeling and confirming the experimental observations in the field of electronic spectroscopy.

Graphical abstract: How does theory compare to experiment for oscillator strengths in electronic spectra? Proposing range-separated hybrids with reliable accountability

Supplementary files

Article information

Article type
Paper
Submitted
03 Oct 2023
Accepted
28 Nov 2023
First published
13 Dec 2023

Phys. Chem. Chem. Phys., 2024,26, 879-894

How does theory compare to experiment for oscillator strengths in electronic spectra? Proposing range-separated hybrids with reliable accountability

M. Soltani Nejad and M. Alipour, Phys. Chem. Chem. Phys., 2024, 26, 879 DOI: 10.1039/D3CP04793H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements