Issue 4, 2024

Modifying the electronic and magnetic properties of the scandium nitride semiconductor monolayer via vacancies and doping

Abstract

In this work, the effects of vacancies and doping on the electronic and magnetic properties of the stable scandium nitride (ScN) monolayer are investigated using first-principles calculations. The pristine monolayer is a two-dimensional (2D) indirect-gap semiconductor material with an energy gap of 1.59(2.84) eV as calculated using the GGA-PBE (HSE06) functional. The projected density of states, charge distribution, and electron localization function assert its ionic character generated by the charge transfer from the Sc atoms to the N atoms. The monolayer is magnetized by a single Sc vacancy with a total magnetic moment of 3.00μB, while a single N vacancy causes a weaker magnetization with a total magnetic moment of 0.52μB. In both cases, the magnetism originates mainly from the atoms closest to the defect site. Significant magnetization is also reached by doping with acceptor impurities. Specifically, a total magnetic moment of 2.00μB is obtained by doping with alkali metals (Li and Na) in the Sc sublattice and with B in the N sublattice. Doping with alkaline earth metals (Be and Mg) in the Sc sublattice and with C in the N sublattice induces a value of 1.00μB. In these cases, either magnetic semiconducting or half-metallicity characteristics arise in the ScN monolayer, making it a prospective 2D spintronic material. In contrast, no magnetism is induced by doping with donor impurities (O and F atoms) in the N sublattice. An O impurity metallizes the monolayer; meanwhile, F doping leads to a large band-gap reduction of the order of 82%, widening the working regime of the monolayer in optoelectronic devices. The results presented herein may introduce efficient methods to functionalize the ScN monolayer for optoelectronic and spintronic applications.

Graphical abstract: Modifying the electronic and magnetic properties of the scandium nitride semiconductor monolayer via vacancies and doping

Supplementary files

Article information

Article type
Paper
Submitted
13 Oct 2023
Accepted
08 Dec 2023
First published
13 Dec 2023

Phys. Chem. Chem. Phys., 2024,26, 3587-3596

Modifying the electronic and magnetic properties of the scandium nitride semiconductor monolayer via vacancies and doping

V. Van On, J. Guerrero-Sanchez and D. M. Hoat, Phys. Chem. Chem. Phys., 2024, 26, 3587 DOI: 10.1039/D3CP04977A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements