Issue 14, 2024

Exploring biased activation characteristics by molecular dynamics simulation and machine learning for the μ-opioid receptor

Abstract

Biased ligands selectively activating specific downstream signaling pathways (termed as biased activation) exhibit significant therapeutic potential. However, the conformational characteristics revealed are very limited for the biased activation, which is not conducive to biased drug development. Motivated by the issue, we combine extensive accelerated molecular dynamics simulations and an interpretable deep learning model to probe the biased activation features for two complex systems constructed by the inactive μOR and two different biased agonists (G-protein-biased agonist TRV130 and β-arrestin-biased agonist endomorphin2). The results indicate that TRV130 binds deeper into the receptor core compared to endomorphin2, located between W2936.48 and D1142.50, and forms hydrogen bonding with D1142.50, while endomorphin2 binds above W2936.48. The G protein-biased agonist induces greater outward movements of the TM6 intracellular end, forming a typical active conformation, while the β-arrestin-biased agonist leads to a smaller extent of outward movements of TM6. Compared with TRV130, endomorphin2 causes more pronounced inward movements of the TM7 intracellular end and more complex conformational changes of H8 and ICL1. In addition, important residues determining the two different biased activation states were further identified by using an interpretable deep learning classification model, including some common biased activation residues across Class A GPCRs like some key residues on the TM2 extracellular end, ECL2, TM5 intracellular end, TM6 intracellular end, and TM7 intracellular end, and some specific important residues of ICL3 for μOR. The observations will provide valuable information for understanding the biased activation mechanism for GPCRs.

Graphical abstract: Exploring biased activation characteristics by molecular dynamics simulation and machine learning for the μ-opioid receptor

Supplementary files

Article information

Article type
Paper
Submitted
17 Oct 2023
Accepted
10 Mar 2024
First published
12 Mar 2024

Phys. Chem. Chem. Phys., 2024,26, 10698-10710

Exploring biased activation characteristics by molecular dynamics simulation and machine learning for the μ-opioid receptor

J. Chen, Q. Gou, X. Chen, Y. Song, F. Zhang and X. Pu, Phys. Chem. Chem. Phys., 2024, 26, 10698 DOI: 10.1039/D3CP05050E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements