Switchable asymmetric transmission with broadband polarization conversion in vanadium dioxide-assisted terahertz metamaterials
Abstract
In this paper, we theoretically present a vanadium dioxide (VO2)-integrated metamaterial, which can achieve switchable single- and double-band asymmetric transmission (AT) in terahertz regions. When VO2 acts as a metal, the presented metamaterial device exhibits a single-band AT effect. In contrast, when VO2 transitions from the metal to the insulating state, a dual-band AT effect can be realized for the presented metamaterials. Also, it is demonstrated that there is a broadband near-perfect orthogonal polarization conversion associated with the AT effect. And the operating mechanisms are elucidated by using the Fabry–Pérot-like cavity model and the electromagnetic field distributions. Moreover, the presented nanostructure exhibits a robust tolerance for the incidence angle. Our designed metamaterial may have potential applications for switchable multi-functional devices in terahertz regimes.