Regulation of CC bonds in penta-graphene by oxidative functionalization: a prototype of penta-graphene oxide (PGO)
Abstract
Penta-graphene (PG) is currently a research hotspot for carbon-based nanomaterials. Herein, we studied the effect of oxidative functionalization on the electric properties of PG by regulating the CC bond. Our results show that the chemical reactivity of the oxidative functionalized PG system is significantly enhanced due to the presence of the dangling bonds, which is achieved at the cost of reduced stability. The oxidative functionalized PG shows enhanced hydrophilicity, which is similar to graphene oxide (GO). More importantly, we found that the adsorption energy decreased gradually with the increase of oxidative functional group coverage, which indicated that hydrogen bonds (H-bonds) between the polarized groups could improve the stability of the oxidative functionalized PG. Finally, we discussed the ratio of carbon and oxygen to hydrogen in oxidative functionalized PG to provide theoretical guidance for experimental characterization. These findings are expected to provide deep insights into understanding the CC regulation in PG and rationally designing and preparing penta-graphene oxide (PGO).