Structure and dynamics of dissociated and undissociated forms of nitric acid and their implications in interfacial mass transfer: insights from molecular dynamics simulations†
Abstract
Nitric acid (HNO3) is widely used in various chemical and nuclear industries. Therefore, it is important to develop an understanding of the different forms of nitric acid for its practical applications. Molecular dynamics (MD) simulation is one of the best tools to investigate the behavior of concentrated nitric acid in aqueous solution with various forms together with pure nitric acid to identify a suitable model of nitric acid for use in simulations of biphasic systems for interfacial mass transfer. The Mulliken partial charge embedded OPLS–AA force field was used to model the neutral nitric acid, hydronium ion and nitrate ion, and it was found that the Mulliken partial charge embedded force field works quite well. The computed density of the dissociated and mixed-form acid was in good agreement with the experimental values. In water, the HNO3 molecule was seen to be coordinated with three water molecules in the first sphere of coordination. The distribution of water surrounding the HNO3 molecule and nitrate ion was corroborated by the DFT-optimized hydrated cluster. The calculated diffusivity values of the neutral acid and ions were significantly higher in the mixed form of nitric acid, which is an important dynamic quantity controlling the kinetics of the liquid–liquid interfacial extraction. The structural analysis revealed that the local aggregation is minimized when both forms of acid are present together in the solution. The water–ion and water–neutral acid interactions were predicted to be enhanced, as confirmed by H-bond studies. The shear viscosity of the mixed acid exhibited excellent agreement with the experimental values, which again confirms the consideration of the mixed form of nitric acid. The simulated value of surface tension for the mixed form of acid also appeared to be quite accurate based on the surface tension of water. The mixed form of nitric acid comprising both forms of acid is the best representation for nitric acid to be considered for MD simulations of biphasic systems. The mixed form of nitric acid established that the concentrated nitric acid may not be present either in the fully dissociated form or fully undissociated form in the solution.