Issue 22, 2024

Tuning the work function of graphite nanoparticles via edge termination

Abstract

Graphite nanoparticles are important in energy materials applications such as lithium-ion batteries (LIBs), supercapacitors and as catalyst supports. Tuning the work function of the nanoparticles allows local control of lithiation behaviour in LIBs, and the potential of zero charge of electrocatalysts and supercapacitors. Using large scale density functional theory (DFT) calculations, we find that the surface termination of multilayer graphene nanoparticles can substantially modify the work function. Calculations in vacuum and in electrolyte show that manipulating the edge termination substantially modifies the potential not only around the edge, but also on the basal plane. Termination with hydrogen or oxygen completely reverses the potential distribution surrounding the basal plane and edges. The trends can be explained based on the work function differences of the edges dependent on termination, and that of the basal plane. Electronic equilibration between different surfaces at the nanoscale allows manipulation of the work function. We demonstrate a link between the area of the graphite basal plane via changing the nanoparticle size, and the work function. We expect that these insights can be utilised for local control of electrochemical functions of graphite nanoparticles prepared under oxidising or reducing conditions.

Graphical abstract: Tuning the work function of graphite nanoparticles via edge termination

Supplementary files

Article information

Article type
Paper
Submitted
12 Mar 2024
Accepted
14 May 2024
First published
14 May 2024
This article is Open Access
Creative Commons BY license

Phys. Chem. Chem. Phys., 2024,26, 16175-16183

Tuning the work function of graphite nanoparticles via edge termination

M. P. Mercer, A. Bhandari, C. Peng, J. Dziedzic, C. K. Skylaris and D. Kramer, Phys. Chem. Chem. Phys., 2024, 26, 16175 DOI: 10.1039/D4CP01079E

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements