Issue 26, 2024

Predicting spin states of iron porphyrins with DFT methods including crystal packing effects and thermodynamic corrections

Abstract

Accurate computational treatment of spin states for transition metal complexes, exemplified by iron porphyrins, lies at the heart of quantum bioinorganic chemistry, but at the same time represents a great challenge for approximate density functional theory (DFT) methods, which are predominantly used. Here, the accuracy of DFT methods for spin-state splittings in iron porphyrin is assessed by probing the ability to correctly predict the ground states for six FeIII or FeII complexes experimentally characterized in solid state. For each case, molecular and periodic DFT calculations are employed to quantify the effect of porphyrin side substituents and the crystal packing effect (CPE) on the spin-state splitting. It is proposed to partition the total CPE into additive components, the direct and structural one, the importance of which is shown to significantly vary from case to case. By knowing the substituent effect, the CPE, and the Gibbs free energy thermodynamic correction from calculations, one can employ the experimental ground-state information in order to derive a quantitative constraint on the electronic energy difference for a simplified (porphin) model of the experimentally characterized metalloporphyrin. The constraints derived in such a way—in the form of single or double inequalities—are used to assess the accuracy of dispersion-corrected DFT methods for 6 spin-state splittings of [FeIII(P)(2-MeIm)2]+, [FeIII(P)(2-MeIm)]+, [FeII(P)(THF)2] and [FeII(P)] models (where P is porphin, 2-MeIm is 2-methylimidazole, THF is tetrahydrofuran). These data constitute the new benchmark set of spin states for crystalline iron porphyrins (SSCIP6). The highest accuracy is obtained in the case of double-hybrid functionals (B2PLYP-D3, DSD-PBEB95-D3), whereas hybrid functionals, especially those with reduced admixture of the exact exchange (B3LYP*-D3, TPSSh-D3), are found to considerably overstabilize the intermediate spin state, leading to incorrect ground-state prediction in FeIII porphyrins. The present approach, which can be generalized to other transition metal complexes, is not only useful in method benchmarking, but also sheds light on the interpretations of experimental data for metalloporphyrins, which are important models to understand the electronic properties of heme proteins.

Graphical abstract: Predicting spin states of iron porphyrins with DFT methods including crystal packing effects and thermodynamic corrections

Supplementary files

Article information

Article type
Paper
Submitted
29 Mar 2024
Accepted
31 May 2024
First published
04 Jun 2024

Phys. Chem. Chem. Phys., 2024,26, 18182-18195

Predicting spin states of iron porphyrins with DFT methods including crystal packing effects and thermodynamic corrections

M. Radoń, Phys. Chem. Chem. Phys., 2024, 26, 18182 DOI: 10.1039/D4CP01327A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements