Issue 44, 2024

Mechanistic insights into the electron attachment process to guanosine in the presence of arginine

Abstract

The attachment of low-energy electrons (LEEs) to DNA biomolecules leads to irreversible damage. However, the behavior of this interaction can be influenced by the presence of amino acids. Herein, we have delved into the mechanism of electron attachment to the guanosine in the presence of arginine. This study used combined molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) approaches to collect and optimize the geometries having hydrogen-bonds (H-bonds) between guanosine and arginine, respectively, followed by atom centered density matrix propagation (ADMP) simulations to assess the electron attachment ability of guanine with and without arginine. The vertical detachment energy (VDE) and natural population analysis (NPA) suggest that the electron attached to guanosine occurs more readily due to the H-bonds between guanosine and arginine. The singly occupied molecular orbitals (SOMOs), VDE, and NPA from ADMP results corroborated the idea that in the presence of arginine, the electron effectively attached to the guanosine moiety while the auto detachment process becomes less probable in the case of arg–guanosine (two-H bonds). However, in the presence of arginine, the dissociative electron attachment (DEA) process for guanosine is exothermic, while in the absence of arginine, it is endothermic. This study provides new insight into the process of radiation damaging biological systems by elucidating the DEA to DNA subunits in the presence of amino acids, paving the way for a deeper understanding of radiation-induced damage in biological systems.

Graphical abstract: Mechanistic insights into the electron attachment process to guanosine in the presence of arginine

Supplementary files

Article information

Article type
Paper
Submitted
27 Jun 2024
Accepted
18 Oct 2024
First published
18 Oct 2024

Phys. Chem. Chem. Phys., 2024,26, 27955-27963

Mechanistic insights into the electron attachment process to guanosine in the presence of arginine

M. P. Sarmah and M. Sarma, Phys. Chem. Chem. Phys., 2024, 26, 27955 DOI: 10.1039/D4CP02558J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements