Unique Catalytic Role of Intermolecular Electric Fields that Emanate from the Lewis Acids in a Ring Closing Carbonyl Olefin Metathesis Reaction
Abstract
Electric field (EF) catalysis has evolved as an effective tool for controlling reactivity and selectivity of reactions. While EF catalysis brings precise control over reactivity, it also challenges the concept's practical realization due to the difficulties in juxtaposing reactants with directional EF. The present density functional theory (DFT) studies demonstrate the catalytic role of the inherent intermolecular EFs that originate from the Lewis acids (LA) during a ring-closing carbonyl-olefin metathesis (RCCOM) reaction. The specificity of LA coordination to reactants generates specifically oriented intermolecular EF components along the reaction axis which is defined parallel to the direction of flow of electrons wherein the influence of the EF would be at maximum. By examining the thermal [2+2] cycloaddition and carbonyl-ene reaction steps in a RCCOM reaction as model systems, the results revealed the pivotal role of intermolecular EF in mixing some of the dormant ionic structures into normal covalent structures and facilitating a partial rotation of the nonbonding orbitals at the carbonyl oxygen to enhance an ionic pseudo pericyclic pathway. The unique role of intermolecular EF is further verified by modelling the pristine reaction, in the absence of LAs, under oriented external EFs. The conspicuous intermolecular EF component adds to other modes of catalysis, such as conventional Lewis acidity, to bring the gross catalytic effect. The findings offer insights into the practical realization of EF catalysis by harnessing the intermolecular EFs and point out the need to include intermolecular EF as an inevitable factor for a holistic explanation of any catalytic mechanism.