Electrocatalytic reduction of CO2 to CO by Fe(iii) carbazole–porphyrins in homogeneous molecular systems†
Abstract
Iron porphyrins have demonstrated remarkable catalytic activity as electrocatalysts for the carbon dioxide reduction reactions (CO2RR). To enhance their catalytic activity, iron(III) tetrakis(4-(diphenylamino)phenyl)porphyrin (FeTDPP) and iron(III) tetrakis(carbazol-9-ylphenyl)porphyrin (FeTCPP) were synthesized by incorporating triphenylamine and phenylcarbazole substituents at the meso position. Both FeTDPP and FeTCPP were able to electrocatalytic reduce CO2 to CO with a Faraday efficiency exceeding 90%. Compared with the benchmark catalyst, iron(III) tetra(meso-phenyl)porphyrin (FeTPP), FeTDPP and FeTCPP exhibit lower overpotentials that are positively shifted by approximately 10 mV and 90 mV, respectively.