Issue 1, 2024

Machine learning based feature engineering for thermoelectric materials by design

Abstract

Availability of material datasets through high performance computing has enabled the use of machine learning to not only discover correlations and employ materials informatics to perform screening, but also to take the first steps towards materials by design. Computational materials databases are well-labelled and provide a fertile ground for predicting both ground-state and functional properties of materials. However, a clear design approach that allows prediction of materials with the desired functional performance does not yet exist. In this work, we train various machine learning models on a dataset curated from a combination of Materials Project as well as computationally calculated thermoelectric electronic power factor using a constant relaxation time Boltzmann transport equation (BoltzTrap). We show that simple random forest-based machine learning models outperform more complex neural network-based approaches on the moderately sized dataset and also allow for interpretability. In addition, when trained on only cubic material systems, the best performing machine learning model employs a perturbative scanning approach to find new candidates in Materials Project that it has never seen before, and automatically converges upon half-Heusler alloys as promising thermoelectric materials. We validate this prediction by performing density functional theory and BoltzTrap calculations to reveal accurate matching. One of those predicted to be a good material, NbFeSb, has been studied recently by the thermoelectric community; from this study, we propose four new half-Heusler compounds as promising thermoelectric materials – TiGePt, ZrInAu, ZrSiPd and ZrSiPt. Our approach is generalizable to extrapolate into previously unexplored material spaces and establishes an automated pipeline for the development of high-throughput functional materials.

Graphical abstract: Machine learning based feature engineering for thermoelectric materials by design

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
14 Jul 2023
Accepted
11 Dec 2023
First published
03 Jan 2024
This article is Open Access
Creative Commons BY-NC license

Digital Discovery, 2024,3, 210-220

Machine learning based feature engineering for thermoelectric materials by design

U. S. Vaitesswar, D. Bash, T. Huang, J. Recatala-Gomez, T. Deng, S. Yang, X. Wang and K. Hippalgaonkar, Digital Discovery, 2024, 3, 210 DOI: 10.1039/D3DD00131H

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements