Issue 11, 2024

Bimetallic CPM-37(Ni,Fe) metal–organic framework: enhanced porosity, stability and tunable composition

Abstract

A newly synthesized series of bimetallic CPM-37(Ni,Fe) metal–organic frameworks with different iron content (Ni/Fe ≈ 2, 1, 0.5, named CPM-37(Ni2Fe), CPM-37(NiFe) and CPM-37(NiFe2)) demonstrated high N2-based specific SBET surface areas of 2039, 1955, and 2378 m2 g−1 for CPM-37(Ni2Fe), CPM-37(NiFe), and CPM-37(NiFe2), having much higher values compared to the monometallic CPM-37(Ni) and CPM-37(Fe) with 87 and 368 m2 g−1 only. It is rationalized that the mixed-metal nature of the materials increases the structural robustness due to the better charge balance at the coordination bonded cluster, which opens interesting application-oriented possibilities for mixed-metal CPM-37 and other less-stable MOFs. In this work, the CPM-37-derived α,β-Ni(OH)2, γ-NiO(OH), and, plausibly, γ-FeO(OH) phases obtained via decomposition in the alkaline medium demonstrated a potent electrocatalytic activity in the oxygen evolution reaction (OER). The ratio Ni : Fe ≈ 2 from CPM-37(Ni2Fe) showed the best OER activity with a small overpotential of 290 mV at 50 mA cm−2, low Tafel slope of 39 mV dec−1, and more stable OER performance compared to RuO2 after 20 h chronopotentiometry at 50 mA cm−2.

Graphical abstract: Bimetallic CPM-37(Ni,Fe) metal–organic framework: enhanced porosity, stability and tunable composition

Supplementary files

Article information

Article type
Paper
Submitted
04 Nov 2023
Accepted
11 Jan 2024
First published
16 Jan 2024
This article is Open Access
Creative Commons BY-NC license

Dalton Trans., 2024,53, 4937-4951

Bimetallic CPM-37(Ni,Fe) metal–organic framework: enhanced porosity, stability and tunable composition

S. Abdpour, M. N. A. Fetzer, R. Oestreich, T. H. Y. Beglau, I. Boldog and C. Janiak, Dalton Trans., 2024, 53, 4937 DOI: 10.1039/D3DT03695B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements