Ultra-fast synthesis of hierarchical SAPO-11 molecular sieves with the assistance of hydroxyl radicals†
Abstract
Considering the traditional time-consuming synthesis route and diffusion-limited micropore system of SAPO-11 (i.e., SAPO-11W), a hydroxyl radical assisted method has been developed to prepare hierarchical SAPO-11 within 5 min (i.e., SAPO-11M). Compared to previous reports, the unique contribution is to induce hydroxyl radicals by exposing carbon materials to microwave irradiation in an oxygen-containing atmosphere. Carbon materials play a dual role as mesopore filler and hydroxyl radical initiator. When employed to prepare deoxygenation catalysts for stearic acids, a higher selectivity for C15–C18 and isomers is observed due to the mild acidity of SAPO-11M. The Lewis-rich acidity of SAPO-11M exhibits an electron deficiency to interact with the hydroxyl oxygen atoms and promotes the hydrodeoxygenation of stearic acids with excellent atom economy. These results are important for opening up a new prospect of synthesizing SAPO molecular sieves (e.g., SAPO-11 and SAPO-5) by an efficient and facile route.