Issue 14, 2024

Controlling the europium oxidation state in diopside through flux concentration

Abstract

This paper explores the connection between the H3BO3 flux concentration and the co-existence of Eu2+ and Eu3+ dopants within CaMgSi2O6 crystals (diopside). The samples were synthesised using a solid-state synthesis method under varying atmospheric conditions, including oxidative (air), neutral (N2), and reductive (H2/N2 mixture) environments. Additionally, some materials underwent chemical modification by partially substituting Si4+ with Al3+ ions acting as charge compensation defects stabilizing Eu3+ luminescence. Depending on the specific synthesis conditions, the materials predominantly displayed either the orange-red luminescence of Eu3+ (under oxidising conditions) or the blue luminescence of Eu2+; however, the comprehensive results confirmed the co-existence of Eu3+/Eu2+ luminescence in both cases. This work shows that varying flux concentrations added during synthesis significantly affect the relative strength of Eu2+ and Eu3+ emissions in a manner dependent on the synthesis atmosphere. The emission of Eu2+ increases with a higher flux concentration in materials synthesised under oxidative and neutral atmospheres independent of the chemical modification. In contrast, for materials obtained under a reductive atmosphere, the changes in the Eu3+ emission intensity depended on the presence or absence of Al3+ ions namely the increase of flux increased the Eu3+ intensity in the case of unmodified materials and decreased in the Al-modified ones. All observed effects were qualitatively explained considering the double role of the flux in the studied system, which besides facilitating the diffusion of chemical species during synthesis acts as a charge compensating agent by creating B′Si centres stabilizing Eu3+ emission.

Graphical abstract: Controlling the europium oxidation state in diopside through flux concentration

Supplementary files

Article information

Article type
Paper
Submitted
12 Dec 2023
Accepted
19 Feb 2024
First published
05 Mar 2024

Dalton Trans., 2024,53, 6386-6398

Controlling the europium oxidation state in diopside through flux concentration

N. Górecka, T. Leśniewski, S. Mahlik, M. Łapiński, Y.-T. Tsai, A. Bielicka-Giełdoń and K. Szczodrowski, Dalton Trans., 2024, 53, 6386 DOI: 10.1039/D3DT04160C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements