Issue 18, 2024

Probing the influence of strontium doping and annealing temperature on the structure and biocompatibility of hydroxyapatite nanorods

Abstract

Among numerous biologically important metal cations, strontium (Sr2+) has received much attention in bone tissue regeneration because of its osteoinductive properties combined with its ability to inhibit osteoclast activity. In this study, strontium-doped hydroxyapatite (Sr-HAp) nanorods with varying molar ratios of Ca : Sr (10 : 0, 9 : 1, 5 : 5, 3 : 7 and 0 : 10) were synthesized using the chemical precipitation technique. The synthesized Sr-HAp nanostructures were characterized using powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy, energy dispersive X-ray spectroscopy, and Raman and Fourier transform infrared (FTIR) spectroscopies to understand their structural and morphological features, and composition. XRD results revealed the formation of HAp nanostructures, whose unit cell volume increased as a function of the dopant level. The reaction process investigation showed the formation of hydroxyapatite (HAp), strontium apatite (SAp) and various Sr-HAp phases. FESEM micrographs displayed the morphological transformation of Sr-HAp from nanorods to nanosheets upon increasing the dopant level. In the FTIR spectra, the bands of the PO43− group shifted towards a lower wavenumber upon increasing the dopant concentration in Sr-HAp that signifies the structural distortion due to the presence of a large amount of strontium ions. The peaks of PO43− and OH vibrations in the Raman spectra were further analysed to corroborate the structural distortion of Sr-HAp. Selected area electron diffraction patterns obtained using TEM reveal the reduced crystallinity of Sr-HAp due to Sr-doping, which is in line with the XRD results. Finally, the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay showed that the synthesized Sr-HAp has no toxic effect on the survival and growth of mesenchymal stem cells. In summary, the synthesized novel Sr-HAp nanorods exhibit great promise for bone tissue engineering applications.

Graphical abstract: Probing the influence of strontium doping and annealing temperature on the structure and biocompatibility of hydroxyapatite nanorods

Supplementary files

Article information

Article type
Paper
Submitted
21 Dec 2023
Accepted
02 Apr 2024
First published
03 Apr 2024

Dalton Trans., 2024,53, 7812-7827

Probing the influence of strontium doping and annealing temperature on the structure and biocompatibility of hydroxyapatite nanorods

H. G. Patil, A. Rajendran, N. Lenka, B. S. Kumar, S. Murugesan and S. Anandhan, Dalton Trans., 2024, 53, 7812 DOI: 10.1039/D3DT04305C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements