Issue 22, 2024

Synthesis and characterization of a novel copper carboxylate complex and a copper complex-coated polyether sulfone membrane for efficient degradation of methylene blue dye under UV irradiation: the single crystal X-ray structure of the copper carboxylate complex

Abstract

Synthesis of a novel binuclear Cu(II) carboxylate complex under ambient laboratory conditions is presented. The complex exhibits a paddle wheel structure in which the axial positions are occupied by two copper atoms instead of two water molecules. The synthesized complex was characterized by single-crystal X-ray crystallography, FT-IR, X-ray diffraction, and UV-visible spectroscopy techniques. The thermal stability of the metal complex was studied by the thermogravimetric analysis study. The synthesized metal complex was employed for the synthesis of metal complex-coated polyether sulfone (PES) membranes which were characterized before and after filtration using the FESEM technique. The photocatalytic efficiency of the metal complex was studied for the degradation of methylene blue dye under UV irradiation in the presence of H2O2 and was compared with the photodegradation efficiency of the metal complex-coated polyether sulfone (PES) membrane.

Graphical abstract: Synthesis and characterization of a novel copper carboxylate complex and a copper complex-coated polyether sulfone membrane for efficient degradation of methylene blue dye under UV irradiation: the single crystal X-ray structure of the copper carboxylate complex

Supplementary files

Article information

Article type
Paper
Submitted
24 Mar 2024
Accepted
08 May 2024
First published
10 May 2024

Dalton Trans., 2024,53, 9441-9451

Synthesis and characterization of a novel copper carboxylate complex and a copper complex-coated polyether sulfone membrane for efficient degradation of methylene blue dye under UV irradiation: the single crystal X-ray structure of the copper carboxylate complex

R. Dhir, B. Shah and N. Singh, Dalton Trans., 2024, 53, 9441 DOI: 10.1039/D4DT00871E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements