Issue 26, 2024

Ambient pressure synthesis and structure and magnetic properties of a new A- and B-site ordered multinary quadruple perovskite

Abstract

Quadruple perovskites with high magnetic transition temperatures are an interesting class of compounds but are synthesized typically under high pressure. Ambient pressure synthesis of new multinary quadruple perovskites having a high global instability index (GII) and transition temperature can be interesting for future exploration of high-TC oxides. A new A- and B-site ordered multinary quadruple perovskite, LaCu3Fe2RuSbO12, is synthesized by conventional solid-state reactions at ambient pressure. Rietveld structure refinement revealed that the compound crystallizes in the Pn[3 with combining macron] space group with a lattice parameter of 7.4556(4) Å. The compound showed complete 1 : 3 ordering of La and Cu at the A-site and 1 : 1 rock-salt ordering of Fe with Ru/Sb at the B-site. The compound is also probed with scanning and transmission electron microscopy and XPS to investigate the chemical composition, microstructure, lattice and oxidation states of the elements. Magnetic studies revealed antiferromagnetic (AFM) correlations with magnetic ordering transitions at ∼170 and 40 K. Furthermore, the M–H hysteretic behavior at 100 and 5 K indicated ferrimagnetism due to short-range AFM interactions among Fe3+(3d5) and Ru4+(4d4) spins involving Cu2+(↑)–Fe3+(↓)–Ru4+(↑) triads. The specific heat data reaffirmed the magnetic signatures while electrical transport showed semiconducting behavior with variable range hopping. The details of synthesis and structural and compositional studies along with the magnetic and electrical transport properties of LaCu3Fe2RuSbO12 are reported in this paper.

Graphical abstract: Ambient pressure synthesis and structure and magnetic properties of a new A- and B-site ordered multinary quadruple perovskite

Supplementary files

Article information

Article type
Paper
Submitted
02 Apr 2024
Accepted
06 Jun 2024
First published
07 Jun 2024

Dalton Trans., 2024,53, 11060-11070

Ambient pressure synthesis and structure and magnetic properties of a new A- and B-site ordered multinary quadruple perovskite

L. Kumar, S. Sen and T. K. Mandal, Dalton Trans., 2024, 53, 11060 DOI: 10.1039/D4DT00973H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements