Synthesis and reduction of [(C5H4SiMe3)2Ln(μ-OR)]2 (Ln = La, Ce) complexes: structural effects of bridging alkoxides†
Abstract
Alcoholysis of Cp′3Ln (Ln = La, Ce; Cp′ = C5H4SiMe3) generate high-yielding (72–97%) bimetallic LnIII complexes of [Cp′2Ln(μ-OR)]2 [R = Et, iPr, or C6H4-4-tBu]. Single-crystal X-ray diffraction of these complexes reveal unexpected decreases in Ln⋯Ln distances, increasing Cpcent–Ln–Cpcent angles, and increasing intermolecular C⋯C contacts with bulkier bridging alkoxides, in line with structural control driven by significant dispersion forces. 1H NMR spectroscopy of [Cp′2Ce(μ-OEt)]2 and [Cp′2Ce(μ-OiPr)]2 revealed significantly upfield resonances assigned as methylene and methine moieties of −43.74 and −70.85 ppm, respectively. 2D 1H DOSY NMR experiments of [Cp′2Ce(μ-OiPr)]2 in C6D6 supported a dimeric structure in solution, including in the presence of a Lewis base (i.e., THF). Reduction of [Cp′2La(μ-OiPr)]2 using KC8 in the presence of 2.2.2-cryptand at −78 °C generated a purple solution and X-band EPR spectroscopy revealed an eight-line hyperfine pattern indicative of a LaII species.
- This article is part of the themed collections: Articles behind our 2024 journal covers and New Talent: Americas