Issue 2, 2024

Urban and Remote cheMistry modELLing with the new chemical mechanism URMELL: part I gas-phase mechanism development

Abstract

Air quality is a globally pressing issue as it poses a major threat for human health and ecosystems. Non-methane volatile organic compounds (NMVOCs) are highly reactive substances and known for their impact on O3, HOx (OH + HO2) and NOx (NO + NO2) concentrations. NMVOCs comprise a variety of anthropogenic and biogenic compounds with highly complex and entangled relations. Therefore, it is key to capture these interdependencies for any air quality assessment through modeling. Unfortunately, chemical mechanisms used for air quality modeling are often too simplified and partly outdated. Here, we present the development of the chemical mechanism URMELL (Urban and Remote cheMistry modELLing) comprising an extended chemical treatment of major anthropogenic and biogenic NMVOCs based on current knowledge. Box model simulations of standardized urban and remote conditions were performed with URMELL and other mechanisms, and the obtained concentration time profiles of key compounds were compared. High correlations (>0.9) with the benchmark mechanism MCMv3.3.1 are found for all urban conditions. For remote conditions, the simulations using URMELL have much higher oxidant concentrations, especially for OH reaching concentrations ∼106 molecules per cm3 which is in the same range of measured ambient OH concentrations at remote isoprene-dominated sites. For further evaluation, URMELL was applied in the chemical transport model COSMO-MUSCAT and simulations for Germany in May 2014 were performed. Modeled O3, NO and NO2 concentrations were compared with 57 measurement sites indicating improved ozone correlations for urban as well as remote isoprene-influenced sites than the currently applied mechanism.

Graphical abstract: Urban and Remote cheMistry modELLing with the new chemical mechanism URMELL: part I gas-phase mechanism development

Supplementary files

Article information

Article type
Paper
Submitted
23 Jun 2023
Accepted
18 Dec 2023
First published
03 Jan 2024
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Atmos., 2024,4, 164-189

Urban and Remote cheMistry modELLing with the new chemical mechanism URMELL: part I gas-phase mechanism development

M. L. Luttkus, E. H. Hoffmann, A. Tilgner, R. Wolke, H. Herrmann and I. Tegen, Environ. Sci.: Atmos., 2024, 4, 164 DOI: 10.1039/D3EA00094J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements