Issue 3, 2024

Atmospheric mercury uptake and accumulation in forests dependent on climatic factors

Abstract

The environmental and climatic factors dictating atmospheric mercury (Hg) uptake by foliage and accumulation within the forest floor are evaluated across six mountain sites, South Korea, using Hg concentration and Hg stable isotope analyses. The isotope ratios of total gaseous Hg (TGM) at six mountains are explained by local anthropogenic Hg emission influence and partly by mountain elevation and wind speed. The extent to which TGM is taken up by foliage is not dependent on the site-specific TGM concentration, but by the local wind speed, which facilitates TGM passage through dense deciduous canopies in the Korean forests. This is depicted by the significant positive relationship between wind speed and foliage Hg concentration (r2 = 0.92, p < 0.05) and the magnitude of δ202Hg shift from TGM to foliage (r2 = 0.37, p > 0.05), associated with TGM uptake and oxidation by foliar tissues. The litter and topsoil Hg concentrations and isotope ratios reveal relationships with a wide range of factors, revealing lower Hg level and greater isotopic fractionation at sites with low elevation, high wind speed, and high mean warmest temperature. We attribute this phenomenon to active TGM re-emission from the forest floor at sites with high wind speed and high temperature, caused by turnover of labile organic matter and decomposition. In contrast to prior studies, we observe no significant effect of precipitation on forest Hg accumulation but precipitation appears to reduce foliage-level Hg uptake by scavenging atmospheric Hg species available for stomata uptake. The results of this study would enable better prediction of future atmospheric and forest Hg influence under climate change.

Graphical abstract: Atmospheric mercury uptake and accumulation in forests dependent on climatic factors

Supplementary files

Article information

Article type
Paper
Submitted
17 Oct 2023
Accepted
29 Jan 2024
First published
30 Jan 2024
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Processes Impacts, 2024,26, 519-529

Atmospheric mercury uptake and accumulation in forests dependent on climatic factors

Y. H. Yang, M. Kim, J. Park and S. Y. Kwon, Environ. Sci.: Processes Impacts, 2024, 26, 519 DOI: 10.1039/D3EM00454F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements