Issue 11, 2024

Improved prediction of PFAS partitioning with PPLFERs and QSPRs

Abstract

Per- and polyfluoroalkyl substances (PFAS) are chemicals of high concern and are undergoing hazard and risk assessment worldwide. Reliable physicochemical property (PCP) data are fundamental to assessments. However, experimental PCP data for PFAS are limited and property prediction tools such as quantitative structure–property relationships (QSPRs) therefore have poor predictive power for PFAS. New experimental data from Endo 2023 are used to improve QSPRs for predicting poly-parameter linear free energy relationship (PPLFER) descriptors for calculating water solubility (SW), vapor pressure (VP) and the octanol–water (KOW), octanol–air (KOA) and air–water (KAW) partition ratios. The new experimental data are only for neutral PFAS, and the QSPRs are only applicable to neutral chemicals. A key PPLFER descriptor for PFAS is the molar volume and this work compares different versions and makes recommendations for obtaining the best PCP predictions. The new models are included in the freely available IFSQSAR package (version 1.1.1), and property predictions are compared to those from the previous IFSQSAR (version 1.1.0) and from QSPRs in the US EPA's EPI Suite (version 4.11) and OPERA (version 2.9) models. The results from the new IFSQSAR models show improvements for predicting PFAS PCPs. The root mean squared error (RMSE) for predicting log KOWversus expected values from quantum chemical calculations was reduced by approximately 1 log unit whereas the RMSE for predicting log KAW and log KOA was reduced by 0.2 log units. IFSQSAR v.1.1.1 has an RMSE one or more log units lower than predictions from OPERA and EPI Suite when compared to expected values of log KOW, log KAW and log KOA for PFAS, except for EPI Suite predictions for log KOW which have a comparable RMSE. Recommendations for future experimental work for PPLFER descriptors for PFAS and future research to improve PCP predictions for PFAS are presented.

Graphical abstract: Improved prediction of PFAS partitioning with PPLFERs and QSPRs

Supplementary files

Article information

Article type
Paper
Submitted
15 Aug 2024
Accepted
21 Sep 2024
First published
26 Sep 2024
This article is Open Access
Creative Commons BY-NC license

Environ. Sci.: Processes Impacts, 2024,26, 1986-1998

Improved prediction of PFAS partitioning with PPLFERs and QSPRs

T. N. Brown, J. M. Armitage, A. Sangion and J. A. Arnot, Environ. Sci.: Processes Impacts, 2024, 26, 1986 DOI: 10.1039/D4EM00485J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements