Volume 2, 2024

Bridging the structural gap of supported vanadium oxides for oxidative dehydrogenation of propane with carbon dioxide

Abstract

As an extensively used industrial catalyst for oxidation reactions, supported vanadium oxide (VOx) is a promising candidate for oxidative dehydrogenation of propane with carbon dioxide (CO2-ODP). Although the structure of VOx is found to be a key factor in determining the catalytic activity and stability of supported VOx for CO2-ODP, the essential reason still remains elusive at the molecular level. To shed some light on this fundamental issue, VOx/(−)SiO2 catalysts with narrow distributions of V loading while well-defined structures of VOx species, i.e., monomeric VOx, less polymeric VOx, highly polymeric VOx and V2O5 crystallites, were purposely synthesized by appropriate methods, including one-pot hydrothermal synthesis, incipient wetness impregnation and physical grinding. We found that the catalytic activity and stability of VOx species decrease in the order of monomeric VOx > less polymeric VOx > highly polymeric VOx > crystalline V2O5, which coincides with the ability for the re-oxidation of the correspondingly reduced VOx species by CO2. As a result of the most facile re-oxidation of the reduced monomeric VOx species by CO2, a well matched redox cycle of V5+/V4+ oxides during CO2-ODP can be maintained with increasing the time on stream, leading to an improved stability of the catalyst with more monomeric VOx. These mechanistic findings on the redox properties of VOx with different structures can be guidelines for developing a high-performance VOx-based catalyst for CO2-ODP.

Graphical abstract: Bridging the structural gap of supported vanadium oxides for oxidative dehydrogenation of propane with carbon dioxide

Supplementary files

Article information

Article type
Paper
Submitted
30 Apr 2024
Accepted
11 Jun 2024
First published
14 Jun 2024
This article is Open Access
Creative Commons BY-NC license

EES. Catal., 2024,2, 1126-1138

Bridging the structural gap of supported vanadium oxides for oxidative dehydrogenation of propane with carbon dioxide

L. Wang, H. Zhang, R. Hu, H. Ge, Y. Song, G. Yang, Y. Li, Z. Liu and Z. Liu, EES. Catal., 2024, 2, 1126 DOI: 10.1039/D4EY00094C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements