Issue 4, 2024

Sustainable nanofiber synthesis from corn protein meal for enhanced vitamin E and curcumin nutrient delivery in food systems

Abstract

Corn protein meal (corn gluten meal) is a byproduct of the cornstarch industry, and it has low solubility and low bioavailability. In the present study, nanofibers (NFs) were synthesized by electrospinning technique from the corn protein meal (CPM) with the necessary daily percentages of vitamin E and curcumin, to serve as a nutrient delivery vehicle for food systems. Thereafter, the physicochemical properties of developed nanofibers were characterized by SEM, FTIR, UV, and TGA, and their encapsulation efficiency, zeta potential, and size were studied. According to findings, with the incorporation of vitamin E, NFs are much thinner and more uniform in comparison to other combinations. It was also observed that corn protein meal NFs can encapsulate vitamin E and curcumin. This study validates the successful preparation of CPM NFs incorporating vitamin E and curcumin. These nanofibers have the potential to be used as a nutrient delivery vehicle for the food industry at a commercial scale.

Graphical abstract: Sustainable nanofiber synthesis from corn protein meal for enhanced vitamin E and curcumin nutrient delivery in food systems

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Communication
Submitted
11 Dec 2023
Accepted
17 May 2024
First published
03 Jun 2024
This article is Open Access
Creative Commons BY-NC license

Sustainable Food Technol., 2024,2, 1011-1021

Sustainable nanofiber synthesis from corn protein meal for enhanced vitamin E and curcumin nutrient delivery in food systems

V. Mishra, D. Kaur, S. Singh, D. P. Singh and M. Krishania, Sustainable Food Technol., 2024, 2, 1011 DOI: 10.1039/D3FB00236E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements