Influence of peptides chirality on their protein-triggered supramolecular hydrogelation

Abstract

Many articles describe the use of enzymes to induce the formation of a supramolecular hydrogel. These enzymes catalyze the transformation of water-soluble precursors, often short peptides, into hydrogelators. The use of non-enzymatic proteins to induce or stabilize peptide self-assembly is a more rarely reported phenomenon, which raises fundamental questions: how can a protein induce peptide self-assembly? How is the peptide recognized and how does it, or the peptide assembly, interact with the protein? The heptapeptide Fmoc-GFFYE-NH-(CH2)2-s-s-(CH2)2-NH-CO-(CH2)2-CO-EE-OH, called L-1 (L = natural chiral amino acids), is a water-soluble compound leading to an increasingly viscous solution over time due to the formation of nanofibers but does not result in hydrogel (at least not within 3 months). When bovine serum albumin (BSA) is added to a freshly prepared solution of L-1, a hydrogel is obtained in less than 10 min. The variation in the L-1/BSA ratio has an impact on the gelation rate and the mechanical properties of the resulting hydrogel. Thus, the protein appears to act as (i) a catalyst and (ii) a cross-linking point. Strikingly, if the enantiomer D-1 (D = unnatural chiral amino acids) is used instead of L-1, the mixture with BSA remains liquid and non-viscous. Similar behavior is also observed for other proteins. Spectroscopic analyses (CD, fluorescence) and electronic microscopy images confirm that the L-1 peptide self-assembles in nanofibers of 10 nm diameter through β-sheet organization, which is not the case for the peptide D-1. A molecular dynamics study shows that BSA is capable of interacting with both enantiomer peptides L-1 and D-1. However, interaction with the L-1 tends to unfold the peptide backbone, making the interaction with the protein more stable and promoting the assembly of following L-1 peptides. Conversely, the interaction between BSA and D-1 is more dynamic and appears to be less spatially localized on the BSA. Furthermore, in this interaction, the D-1 peptide keeps its globular conformation. These results highlight the impact of short peptides chirality in protein-triggered supramolecular hydrogelation.

Supplementary files

Article information

Article type
Paper
Submitted
14 Jan 2025
Accepted
14 Feb 2025
First published
15 Feb 2025
This article is Open Access
Creative Commons BY-NC license

Faraday Discuss., 2024, Accepted Manuscript

Influence of peptides chirality on their protein-triggered supramolecular hydrogelation

S. H. More, T. Dorosh, J. Runser, A. Bigo-Simon, R. Schurhammer, V. Ball, L. Jacomine, M. Schmutz, A. Chaumont, P. Schaaf and L. Jierry, Faraday Discuss., 2024, Accepted Manuscript , DOI: 10.1039/D5FD00007F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements