Issue 6, 2024

Stilbenes-enriched peanut sprouts alleviated physical fatigue via regulating interactions of nutrients–microbiota–metabolites revealed by multi-omics analysis

Abstract

In this study, the antifatigue effect and mechanism of peanut sprouts were explored. BALB/c mice divided into three groups (control, dark and UV-C) were respectively supplemented with a normal diet, peanut sprouts (dark germination) added diet and stilbenes-enriched peanut sprouts (UV-C radiated germination) added diet. Results showed that swimming time and levels of blood glucose and antioxidant enzymes significantly increased, while contents of triglyceride and malondialdehyde notably decreased by peanut sprout supplementation. Besides, combined analysis of gut microbiota gene sequencing and targeted metabolomics of fecal metabolites revealed that peanut sprout supplementation up-regulated abundances and metabolic transformations of Catenibacillus, Odoribacter, Prevotellaceae-UCG-001 and Butyricicoccus while it down-regulated the abundance of Parabacteroides. Consequently, contents of sebacic acid, azelaic acid, suberic acid, heptanoic acid, pimelic acid, aminoadipic acid and mono-phenolics notably increased, which were markedly correlated with the antifatigue effect. Compared with the dark group, the swimming time, glutathione peroxidase activity, methylmalonylcarnitine content and abundances of Butyricicoccus, Catenibacillus and Lachnospiraceae NK4A136 were higher in the UV-C group, while opposite results were obtained for the levels of triglyceride, malondialdehyde, alpha-linolenic acid, gamma-linolenic acid, 10Z-heptadecenoic acid and palmitelaidic acid. Overall, peanut sprout supplementation could alleviate fatigue by modulating gut microbiota composition to promote fatty acid oxidation and lysine and stilbene catabolism to increase energy supply and regulate redox balance. UV-C-radiated peanut sprout supplementation could alleviate fatigue more effectively by up-regulating abundances of Butyricicoccus, Catenibacillus and Lachnospiraceae NK4A136 to promote long-chain fatty acid oxidation and catabolism of flavonoids and stilbenes efficiently.

Graphical abstract: Stilbenes-enriched peanut sprouts alleviated physical fatigue via regulating interactions of nutrients–microbiota–metabolites revealed by multi-omics analysis

Supplementary files

Article information

Article type
Paper
Submitted
23 Sep 2023
Accepted
06 Feb 2024
First published
26 Feb 2024

Food Funct., 2024,15, 2960-2973

Stilbenes-enriched peanut sprouts alleviated physical fatigue via regulating interactions of nutrients–microbiota–metabolites revealed by multi-omics analysis

T. Zhu, Q. Pan, K. Xiao, C. Zuo, Q. Liu, D. Zhou and K. Tu, Food Funct., 2024, 15, 2960 DOI: 10.1039/D3FO04076C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements