Issue 21, 2024

Lacticaseibacillus paracasei 207-27 alters the microbiota–gut–brain axis to improve wearable device-measured sleep duration in healthy adults: a randomized, double-blind, placebo-controlled trial

Abstract

Objective: Probiotics have been reported to exert beneficial effects on sleep through the gut–brain axis. Therefore, this randomized, double-blind, placebo-controlled trial assessed the effects of Lacticaseibacillus paracasei 207-27 supplementation on sleep quality and its safety and potential mechanisms. Method and study design: Healthy adults under mild stress aged 18–35 years consumed low or high doses of L. paracasei 207-27 or a placebo for 28 days. Fecal samples, blood samples, and questionnaires were collected at the baseline and the end of the intervention. Sleep quality was measured using wearable devices and Pittsburgh sleep quality index (PSQI) questionnaire. Serum inflammatory markers, corticotropin-releasing hormone, adrenocorticotropic hormone (ACTH), cortisol (COR), γ-aminobutyric acid, and 5-hydroxytryptamine levels were detected using enzyme-linked immunosorbent assay. The gut microbiota was analyzed using 16S rRNA sequencing and bioinformatics. Short-chain fatty acids levels were detected using gas chromatography–mass spectrometry. Results: Both the low-dose and high-dose groups exhibited significant improvements in wearable device- measured sleep duration compared to the placebo group. The global scores of PSQI in three groups significantly decreased after intervention without statistical difference between groups. At the phylum level, the low-dose group exhibited a higher relative abundance of Bacteroidota and a lower Firmicutes-to-Bacteroidetes (F/B) ratio. At the genus level, two treatment groups had higher relative abundance of Bacteroides and Megamonas, alongside lower levels of Escherichia-Shigella. Furthermore, the low-dose group exhibited significant increases in acetic acid, propionic acid, butyric acid, and valeric acid levels, while two treatment groups exhibited a significant decrease in COR levels. Correlation analysis revealed that the increased levels of acetic acid and butyric acid in the low-dose group may be associated with decreased ACTH. Conclusion: L. paracasei 207-27 administration in healthy adults resulted in improvements in gut microbiota community and sleep duration. The mechanisms might involve modulation of the gut microbiota structure to regulate the function of the gut–brain axis, including increases in SCFA levels and decreases in hypothalamic–pituitary–adrenal axis activity. The Chinese clinical trial registry number is ChiCTR2300069453 (https://www.chictr.org.cn/showproj.html?proj=191193, registered 16 May 2023 - retrospectively registered).

Graphical abstract: Lacticaseibacillus paracasei 207-27 alters the microbiota–gut–brain axis to improve wearable device-measured sleep duration in healthy adults: a randomized, double-blind, placebo-controlled trial

Supplementary files

Article information

Article type
Paper
Submitted
11 Apr 2024
Accepted
27 Sep 2024
First published
10 Oct 2024
This article is Open Access
Creative Commons BY-NC license

Food Funct., 2024,15, 10732-10745

Lacticaseibacillus paracasei 207-27 alters the microbiota–gut–brain axis to improve wearable device-measured sleep duration in healthy adults: a randomized, double-blind, placebo-controlled trial

J. Li, J. Zhao, X. Ze, L. Li, Y. Li, Z. Zhou, S. Wu, W. Jia, M. Liu, Y. Li, X. Shen, F. He and R. Cheng, Food Funct., 2024, 15, 10732 DOI: 10.1039/D4FO01684J

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements