Issue 24, 2024

Human milk metals and metalloids shape infant microbiota

Abstract

Background: The profile of metal(loid)s in human milk is essential for infant growth and development, yet its impact on the development of the infant microbiota remains unclear. Elements, such as manganese, zinc, iron or copper, play crucial roles in influencing infant health. Aim: To investigate the metal(loid) content within human milk and its influence on the infant's gut microbiota within the first 2 months after birth. Methods: Human milk samples and infant stool samples from 77 mother–infant dyads in the MAMI cohort were collected at two time points: the early transitional stage and the mature stage. Metallomic profiling of human milk was conducted using inductively coupled plasma-mass spectrometry (ICP-MS). The infant gut microbiota was profiled through 16S rRNA amplicon sequencing and maternal–infant clinical data were available. Spearman's rank correlation coefficientsprovided insights into metal(loid)–microbiota relationships. Results: Independent cross-sectional analyses of mother–infant pairs at two time points, significant variations in metal concentrations and differences in microbial abundances and diversities were observed. Notably, Bifidobacterium genus abundance was higher during the mature lactation stage. During early lactation, we found a significant positive correlation between infant gut Corynebacterium and human milk nickel concentrations, and negative correlations between Veillonella spp. and antimony, and Enterobacter spp. and copper. Additionally, Simpson's diversity was negatively correlated with iron. In the mature lactation stage, we identified eleven significant correlations between metals and microbiota. Notably, Klebsiella genus showed multiple negative correlations with iron, antimony, and vanadium. Conclusion: Our study highlights the significance of metal(loid)–microbiota interactions in early infant development, indicating that infant gut Klebsiella genus may be particularly vulnerable to fluctuations in metal(loid) levels present in human milk, when compared to other genera. Future research should explore these interactions at a strain level and the implications on infant health and development. This trial was registered as NCT03552939.

Graphical abstract: Human milk metals and metalloids shape infant microbiota

Supplementary files

Article information

Article type
Paper
Submitted
25 Apr 2024
Accepted
08 Nov 2024
First published
11 Nov 2024
This article is Open Access
Creative Commons BY-NC license

Food Funct., 2024,15, 12134-12145

Human milk metals and metalloids shape infant microbiota

E. Flores Ventura, M. Bernabeu, B. Callejón-Leblic, R. Cabrera-Rubio, L. Yeruva, J. Estañ-Capell, C. Martínez-Costa, T. García-Barrera and M. C. Collado, Food Funct., 2024, 15, 12134 DOI: 10.1039/D4FO01929F

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements