Correlation between vitamin D metabolic pathway-related gene polymorphisms and cardiovascular disease
Abstract
Vitamin D plays important roles in various physiological processes such as cardiovascular health, calcium balance regulation, bone health, immune system support, neurological function regulation, muscle function maintenance, and anti-inflammatory effects. Therefore, maintaining its adequate levels is essential for overall health. Genetic polymorphisms in vitamin D metabolic pathways have become a key factor affecting the susceptibility and progression of cardiovascular disease (CVD). This article reviews the relationship between gene polymorphisms in vitamin D metabolic pathways and vitamin D levels or CVD. It is emphasized that the polymorphisms of key genes such as GC, VDR, CYP2R1, CYP24A1 and CYP27B1 are related to the pathogenesis of CVD. These polymorphisms can regulate serum levels of vitamin D, thereby affecting the susceptibility, comorbidities and clinical manifestations of CVD. Despite the progress made, there are still inconsistencies and gaps in the literature. Thus, it is necessary to conduct large-scale, multicenter studies to verify these findings and deepen our understanding of the intricate interactions between gene polymorphisms in vitamin D metabolic pathways and CVD.
- This article is part of the themed collections: Food & Function HOT Articles 2024 and Food & Function Review Articles 2024