Environmental impact of different scenarios for the pyrolysis of contaminated mixed plastic waste†
Abstract
Every day, large amounts of plastic are disposed of all over the world. Most of it is not recycled and ends up polluting the environment. Therefore, waste collection and management must be improved to reduce the environmental impact caused by plastic waste. Pyrolysis has been explored as an alternative to treat contaminated mixed plastic waste and obtain valuable materials, such as oil and char. These materials can effectively substitute fuel and activated carbon, respectively. However, the pyrolysis process also has a significant environmental impact, mainly due to gas emissions. It is important to quantify this environmental impact and compare it with alternative treatment methods to identify the best management strategy for contaminated mixed plastic waste. This study applies the Life-Cycle Assessment methodology to evaluate the environmental impact and compare it with the conventional practice of landfilling. Three different pyrolysis scenarios are considered: one in which the char is used as fuel and therefore combusted, and two in which the char is activated by carbon dioxide and potassium hydroxide, respectively, to be used as an adsorbent. Our results show that pyrolysis is environmentally superior to landfilling for the treatment of contaminated mixed plastic waste. This is mainly due to the production of oil, which substitutes commercial diesel, the production of which has a high environmental impact. Pyrolysis followed by char combustion has the lowest environmental impact of all pyrolysis scenarios considered.