Issue 19, 2024

A comparative life cycle assessment of the synthesis of mesoporous silica materials on a small and a large scale

Abstract

Silica mesoporous materials have been the subject of wide scientific interest with various applications. However, the environmental impacts associated with their preparation have scarcely been studied. In the present work, we applied the Life Cycle Assessment (LCA) methodology to the materials MCM-41, MCM-48, UVM-7, mesoporous Stober particles, SBA-15, SBA-16, HMS, KIT-5, KIT-6, MSU, FDU, nano-MCM-41 and nano-MCM-48 for small- (grams) and large-scale (several kilograms) production. Furthermore, various improvements are proposed, and the impact associated with each of them is quantified. The results show that the values of a single score, a normalized and weighed combination of the damage categories, and net greenhouse gas emissions (NGHGE) are highly dependent on the synthesis procedures. On a small scale, the main impact is due to the use of energy and solvents. By contrast on a large scale, the use of solvents, tetraethylorthosilicate and the structure directing agent are the main determinants. From the values obtained for the different materials and scenarios, we estimate that the preparation of this class of materials could have an NGHGE of 54 ± 30 and 31 ± 18 kg CO2 eq. per kg of mesoporous material for small- and large-scale production, respectively. The use of calcination versus extraction, the incorporation of renewable energy and distillation/rectification are initiatives that can contribute to a significant reduction of the environmental impact.

Graphical abstract: A comparative life cycle assessment of the synthesis of mesoporous silica materials on a small and a large scale

Supplementary files

Article information

Article type
Paper
Submitted
12 May 2024
Accepted
29 Jul 2024
First published
08 Aug 2024
This article is Open Access
Creative Commons BY-NC license

Green Chem., 2024,26, 10107-10114

A comparative life cycle assessment of the synthesis of mesoporous silica materials on a small and a large scale

J. V. Ros-Lis, S. Vetter and P. Smith, Green Chem., 2024, 26, 10107 DOI: 10.1039/D4GC02347A

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements