Issue 7, 2024

Lab on skin: real-time metabolite monitoring with polyphenol film based subdermal wearable patches

Abstract

The advent of digital technologies has spurred the development of wearable sensing devices marking a significant shift in obtaining real-time physiological information. The principal objective is to transition from blood-centric monitoring to minimally invasive modalities, which will enable movement from specialised settings to more accessible environments such as the practices of general practitioners or even home settings. While subcutaneously implanted continuous monitoring devices have demonstrated this transition, detection of analytes from sample matrices like skin interstitial fluid (ISF), is a frontier that offers attractive minimally invasive routes for detection of biomarkers. This manuscript presents a comprehensive overview of our work in subdermal wearable biosensing patches for the simultaneous monitoring of glucose and lactate from ISF in ambulatory conditions. The performance of the subdermal wearable glucose monitoring patch was evaluated over a duration of three days, which is the longest reported duration reported till date. The subdermal wearable lactate sensing patch was worn for the duration of the exercise. Our findings highlight a critical observation that biofouling effects become apparent after a 24 h period. The data presented in this manuscript extends on the knowledge in the areas of continuous metabolite monitoring by introducing multifunctional polyphenol polymer films that can be used for both glucose and lactate monitoring with appropriate modifications. This study underscores the potential of subdermal wearable patches as versatile tools for real-time metabolite monitoring, positioning them as valuable assets in the evolution of personalised healthcare in diverse settings.

Graphical abstract: Lab on skin: real-time metabolite monitoring with polyphenol film based subdermal wearable patches

Supplementary files

Article information

Article type
Paper
Submitted
24 Jan 2024
Accepted
22 Feb 2024
First published
22 Feb 2024
This article is Open Access
Creative Commons BY-NC license

Lab Chip, 2024,24, 2039-2048

Lab on skin: real-time metabolite monitoring with polyphenol film based subdermal wearable patches

G. Vulpe, G. Liu, S. Oakley, G. Yang, A. Ajith Mohan, M. Waldron and S. Sharma, Lab Chip, 2024, 24, 2039 DOI: 10.1039/D4LC00073K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements