Issue 20, 2024

Microfluidic sperm trap array for single-cell flagellar analysis with unrestricted 2D flagellar movement

Abstract

Sperm capture techniques that immobilize sperm to halt their motility are essential for the long-term analysis of individual sperm. These techniques are beneficial in assisted reproductive technologies such as intracytoplasmic sperm injection (ICSI) by allowing selective screening of sperm. However, there is a notable lack of high-throughput and non-destructive sperm capture methods that allow the flagellum to beat freely, which is crucial for accurately reflecting the behavior of unfettered, freely swimming sperm. To bridge this gap, we introduce a novel microfluidic device specifically engineered to capture sperm without restricting flagellar motion. The design utilizes sperm's innate boundary-following behavior in both 3D and 2D environments to direct them into a capture zone. Once captured, the sperm head is restrained while the flagellum remains free to exhibit natural beating patterns. Utilizing this device, we explore the effects of hyperactivating agents, temperature, and their combined influence on the dynamics of bovine sperm flagella. The unrestricted flagellar motion offered by our device yields two prominent advantages: it mirrors the flagellar behavior of free-swimming sperm, ensuring research findings are consistent with natural sperm activity, and it prevents imaging overlap between the flagellum and the capture structures, simplifying the automation of flagellar tracking and analysis. This technological advancement facilitates the collection of waveform parameters along the entire flagellum, addressing inconsistencies that have arisen in previous research due to differing measurement sites, and enabling precise extraction of sperm behavioral properties.

Graphical abstract: Microfluidic sperm trap array for single-cell flagellar analysis with unrestricted 2D flagellar movement

Supplementary files

Article information

Article type
Paper
Submitted
17 Jun 2024
Accepted
11 Sep 2024
First published
12 Sep 2024

Lab Chip, 2024,24, 4827-4842

Microfluidic sperm trap array for single-cell flagellar analysis with unrestricted 2D flagellar movement

K. Wang, A. Tao, R. Zhang and J. Yuan, Lab Chip, 2024, 24, 4827 DOI: 10.1039/D4LC00515E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements