Issue 22, 2024

Fire-resistant propargyl ether networks derived from bio-based hydroxycinnamic acids

Abstract

Three bio-based propargyl ether thermosetting resins with trans-stilbene cores were synthesized from p-coumaric (CD), ferulic (FD), and sinapic (SD) acid, respectively. Differential scanning calorimetry (DSC) analysis of these materials indicated modest processability due to high melting points, short processing windows and large exotherms. To address this issue, a fourth resin with a more flexible bridging group (TD) was synthesized from p-coumaric acid and used as a blending agent. In parallel, CD was photochemically isomerized to the cis-isomer (PD) and blends of CD:PD were prepared. Cross-linked networks derived from the resins exhibited glass transition temperatures (Tgs) ranging from 285–330 °C (storage modulus) and char yields from 27–59% at 1000 °C under N2. The processable resin blends exhibited exceptional thermal stability due to a higher degree of cross-linking enabled by the structural diversity of the blends. The fire resistance of the networks was evaluated through microscale combustion calorimetry. The networks exhibited heat release capacity (HRC) values ranging from 43–103 J g−1 K−1, which classified them as either non-ignitable or self-extinguishing materials. The results demonstrate that abundant, bio-based hydroxycinnamic acids can serve as platform chemicals for the preparation of thermally stable, fire-resistant networks for aerospace applications.

Graphical abstract: Fire-resistant propargyl ether networks derived from bio-based hydroxycinnamic acids

Supplementary files

Article information

Article type
Paper
Submitted
11 Jun 2024
Accepted
03 Sep 2024
First published
12 Sep 2024
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2024,5, 8787-8797

Fire-resistant propargyl ether networks derived from bio-based hydroxycinnamic acids

C. E. Zavala, J. E. Baca, L. C. Baldwin, K. R. McClain and B. G. Harvey, Mater. Adv., 2024, 5, 8787 DOI: 10.1039/D4MA00610K

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements