Issue 20, 2024

Facile fabrication of stretchable, anti-freezing, and stable organohydrogels for strain sensing at subzero temperatures

Abstract

Conductive hydrogel-based soft devices are gaining increasing attention. Still, their dependence on water makes them susceptible to freezing and drying, which affects their long-term stability and durability and limits their applications under subzero temperatures. Developing hydrogels that combine exceptional strength, high strain sensitivity, anti-freezing properties, synchronous sensing, durability, and actuating capabilities remains a significant challenge. To overcome these issues, a universal solvent replacement strategy (USRS) was adopted to fabricate anti-freezing and anti-drying organohydrogels with ultra stretchability and high strain sensitivity in a wide temperature range. Ethylene glycol (Eg) and glycerol (Gl) were used as secondary solvents to replace water (primary solvent) from the hydrogel network. Due to the strong hydrogen bonding capabilities of Eg and Gl with water and the hydrogel network, the organohydrogels formed show resistance to freezing and drying. This allows the organohydrogels to maintain conductivity, sensitivity, stretchability, and durability under subzero temperatures. The developed organohydrogels display remarkable stretchability (850%), good electrical conductivity (0.45 S m−1), exceptional anti-freezing performance below −90 °C and very high sensitivity (GF = 10.14). Additionally, the strain sensor demonstrates a notably wide strain range (1–600%) checked within the temperature range of −15 °C to 25 °C. It also effectively monitors various human movements with differing strain levels, maintaining good stability and repeatability from −15 to 25 °C. It is also believed that this strain sensor can work efficiently above and below the mentioned temperature range. This study introduced a straightforward approach to developing conductive organohydrogels with outstanding anti-freezing and mechanical properties, demonstrating significant potential for use in wearable strain sensors and soft robotics.

Graphical abstract: Facile fabrication of stretchable, anti-freezing, and stable organohydrogels for strain sensing at subzero temperatures

Supplementary files

Article information

Article type
Paper
Submitted
17 Jul 2024
Accepted
14 Sep 2024
First published
18 Sep 2024
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2024,5, 8164-8176

Facile fabrication of stretchable, anti-freezing, and stable organohydrogels for strain sensing at subzero temperatures

M. Sher, L. A. Shah, J. Fu, H. Yoo, R. Ullah and M. A. Ibrahim, Mater. Adv., 2024, 5, 8164 DOI: 10.1039/D4MA00725E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements