Issue 22, 2024

A cost-effective strategy to design and fabricate absorption dominant flexible multilayer laminates by rationally tailoring their layers

Abstract

Owing to the ever-increasing complexity of the electromagnetic environment, the market for electromagnetic interference (EMI) shielding is expanding at a rapid rate. Recently, there has been a focus on developing new methods that can be used to fine-tune and forecast the shielding qualities of buildings without using up all of the raw materials. Additionally, methods that are economical and need a short duration of time for optimization have been prioritized. The purpose of this article is to demonstrate an efficient and accurate method for predicting the EMI shielding effectiveness (EMI SE) of materials. This is accomplished by simulating the performance of composites that contain alternate layers of conducting and magnetic materials within a virtual waveguide measurement environment. Using CST Studio Suite software, the EMI shielding effectiveness of multilayered structures is simulated in the X-band range. The strategic arrangement of electromagnetic (EM) energy-trapping layers within impedance-matching layers in the multilayered structures is found to significantly contribute to the enhancement of absorption-dominated EMI shielding, as demonstrated through a simulation carried out by varying the order and number of the conducting and magnetic layers. Among the multilayered structures, the PC/PM/PC (PVDF-CNF/PVDF-MWCNTs/PVDF-CNF) systems showed the best shielding efficiency, with a value of 96.47 dB. Poly(vinylidene fluoride)-based composites comprising low-cost MWCNTs are used to construct the multilayered structures for testing purposes. After completing this research, we came up with the hypothesis that it is not required to use materials that have a high manufacturing cost and need laborious fabrication processes in order to create extremely effective shielding materials.

Graphical abstract: A cost-effective strategy to design and fabricate absorption dominant flexible multilayer laminates by rationally tailoring their layers

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
23 Jul 2024
Accepted
27 Sep 2024
First published
21 Oct 2024
This article is Open Access
Creative Commons BY-NC license

Mater. Adv., 2024,5, 8889-8900

A cost-effective strategy to design and fabricate absorption dominant flexible multilayer laminates by rationally tailoring their layers

V. Khade, A. B. Thirumalasetty, Y. K. Choukiker and M. Wuppulluri, Mater. Adv., 2024, 5, 8889 DOI: 10.1039/D4MA00741G

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements